Gender, Math, and the FCI

Laura McCullough
Physics Department
University of Wisconsin-Stout

Gender Gap

A strong gender gap exists on FCI scores in which male students out-perform female students. (Data from 8 different institutions)

	Pre \% (S.E)	Post \% (S.E.)	<g>
Women ($\mathrm{N}=780$)	35.6 (.5)	57.4 (.7)	0.34 (.01)
Men ($\mathrm{N}=1997$)	50.3 (.4)	68.6 (.5)	0.39 (.01)

McCullough, 2002. Gender, Educational Reform, and Instructional Assessment: Part I. Paper presented at the American Association of Physics Teachers Meeting in Philadelphia, PA. January 2002. Available at http://physics.uwstout.edu/staff/mocullough/physicseduc.htm.
Crouch, C. H. (2002). Gender, Educational Reform, and Instructional Assessment: Part II. Paper presented at the American Association of Physics Teachers Meeting in Philadelphia, PA. January 2002. Available at http://mazur-www.harvard.edu/talks/talks.taf? function=detail\&id=417

Mind the Gap

Why does this gender gap exist?
Are men better than women at physics?
Are women poorer test-takers?
Is the test biased against women?
Do women have weaker backgrounds in math and physics?
\rightarrow Let's look at math background

Methodology

300 non-physics students at UW-Stout
English and sociology classes (administering this was very fun!)
Voluntary, anonymous, ungraded testing Given either the original FCI or a more female-centric version (McCullough, 2001)
After the test, asked 9 demographic questions

McCullough, 2001. A Gender Context for the Force Concept Inventory. Paper presented at the American Association of Physics Teachers Meeting in San Diego, CA. January 2001. Available at http://physics.uwstout.edu/staff/mccullough/physicseduc.htm

Sample -UW-Stout

312 English and sociology students
45% first-years, 32% sophomores, 13% juniors, 10% seniors
59% women, 41% men
30 different majors, only 43 undecided 64% of women and 53% of men had no previous physics experience 34% of women and 30% of men had high school physics

Math level and FCI score

High school math and FCI score

	$\begin{array}{\|l} \hline \text { Avg. \% } \\ \text { score (N) } \end{array}$	Males/ GFCI	Females/ GFCI	Males/ FCI	Females/ FCI
	1		$\begin{aligned} & 13 \\ & (1) \end{aligned}$		$\begin{gathered} 7 \\ (1) \end{gathered}$
	2	$\begin{aligned} & 28 \\ & (6) \end{aligned}$	$\begin{aligned} & 14 \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 27 \\ & (2) \end{aligned}$	$\begin{aligned} & 19 \\ & \text { (6) } \end{aligned}$
	2.5				$\begin{aligned} & 10 \\ & (1) \\ & \hline \end{aligned}$
	3	$\begin{gathered} \hline 26 \\ (30) \end{gathered}$	$\begin{gathered} \hline 24 \\ (24) \end{gathered}$	$\begin{gathered} 30 \\ (17) \end{gathered}$	$\begin{gathered} 20 \\ (45) \end{gathered}$
SOS	3.5		$\begin{aligned} & 27 \\ & (2) \end{aligned}$		$\begin{aligned} & 27 \\ & (4) \end{aligned}$
$\begin{aligned} & \text { Inoo } \\ & \text { ЧІеши } \end{aligned}$	4	$\begin{gathered} 29 \\ (30) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ (49) \end{gathered}$	$\begin{gathered} 34 \\ (29) \end{gathered}$	$\begin{gathered} 21 \\ (37) \\ \hline \end{gathered}$
OYOS	4.5	$\begin{aligned} & 59 \\ & (1) \end{aligned}$			
पठ)! f0 \#	5	$\begin{aligned} & 44 \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 25 \\ & (1) \end{aligned}$	$\begin{aligned} & 30 \\ & (1) \end{aligned}$	$\begin{aligned} & \hline 33 \\ & \text { (2) } \end{aligned}$
	5.5				$\begin{aligned} & 27 \\ & (1) \end{aligned}$
	6				$\begin{aligned} & 27 \\ & (1) \end{aligned}$

Number of high school math courses taken did not influence FCI score; nor did it interact with gender; gender gap seen

College math and FCI score

	$\begin{aligned} & \text { Avg. \% } \\ & \text { score }(\mathrm{N}) \\ & \hline \end{aligned}$	Males/ GFCI	Females/ GFCI	Males/ FCI	Females/ FCI
	0	$\begin{gathered} 25 \\ (21) \end{gathered}$	$\begin{gathered} 24 \\ (36) \end{gathered}$	$\begin{gathered} 29 \\ (12) \end{gathered}$	$\begin{gathered} 21 \\ (35) \end{gathered}$
	1	$\begin{gathered} 28 \\ (26) \end{gathered}$	$\begin{gathered} 20 \\ (28) \end{gathered}$	$\begin{gathered} 36 \\ (21) \end{gathered}$	$\begin{gathered} 22 \\ (30) \end{gathered}$
	2	$\begin{gathered} 29 \\ (12) \end{gathered}$	$\begin{gathered} 21 \\ (11) \end{gathered}$	$\begin{gathered} 27 \\ (10) \end{gathered}$	$\begin{gathered} 19 \\ (22) \end{gathered}$
SəS Inoo	3	$\begin{aligned} & 31 \\ & (7) \end{aligned}$	$\begin{aligned} & 23 \\ & (2) \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 20 \\ & \text { (8) } \end{aligned}$
$\begin{array}{r} \text { чргшu } \\ \text { әء์ } \end{array}$	4	$\begin{aligned} & 43 \\ & (4) \end{aligned}$	$\begin{aligned} & 33 \\ & (2) \end{aligned}$	$\begin{aligned} & 42 \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & 20 \\ & \text { (2) } \end{aligned}$
	5			$\begin{aligned} & 13 \\ & (1) \end{aligned}$	$\begin{aligned} & 13 \\ & \text { (2) } \end{aligned}$
	6			$\begin{aligned} & 40 \\ & (1) \end{aligned}$	$\begin{aligned} & 10 \\ & (1) \end{aligned}$

Number of college math courses taken did not influence FCI score; nor did it interact with gender; gender gap seen

Conclusion:
 Math background and FCI score

Math background does not have an effect on FCI score for this sample
An ANOVA analysis of the data suggests the same conclusion: math doesn't make a significant difference
Math and gender did not interact for this sample; but gender gap did show up
\rightarrow Math background doesn't explain gender gap

