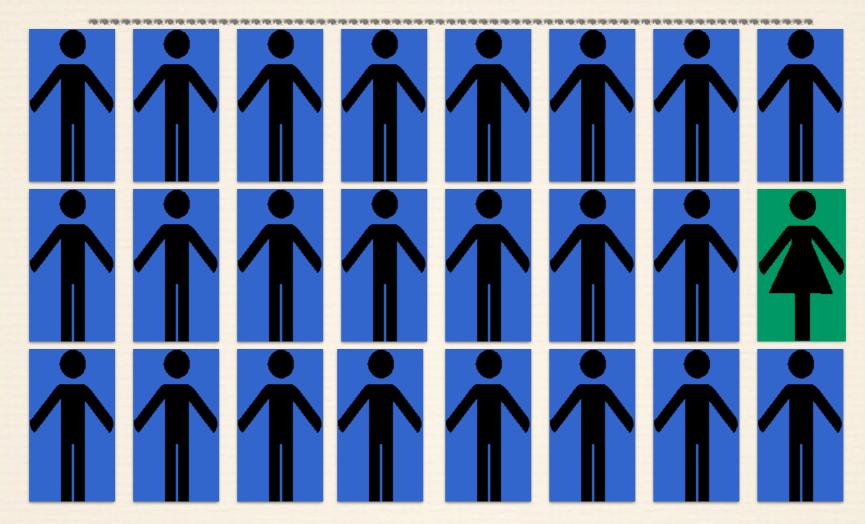
What's up with women and physics?!

Laura McCullough
UW-Stout Physics Department



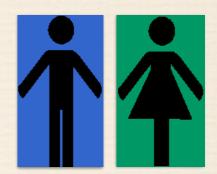
Undergraduate Physics

首首首首首首首首首

- * Hamline University Physics B.A.
- Quantum physics taught by WHO?!

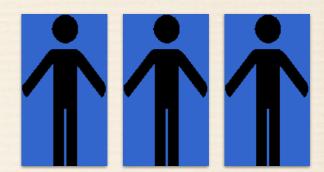
Graduate Physics Program

- Physics GRE
- * University of Minnesota: little fish in big pond
- * TA training


Graduate Education Program

- * Research group
- * Department
- * Research
- * Teaching

Physics Faculty Member



- * UW-Stout
- * First female faculty member in department
- * Great department

Today—UW-Stout Faculty

- Just finished 6.5 years as head of department
- * Enjoying research, teaching, service
- Adore my job!

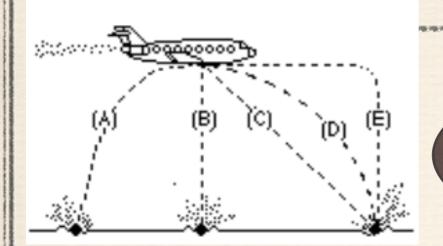
The role of a professor

* General role of faculty member: Teaching, Research, and Service

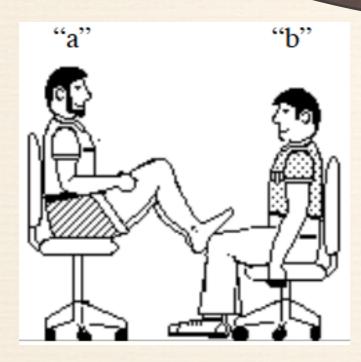
My own research—current

- * National Science Foundation grant
- * STEM students with disabilities
- * Soft skills training

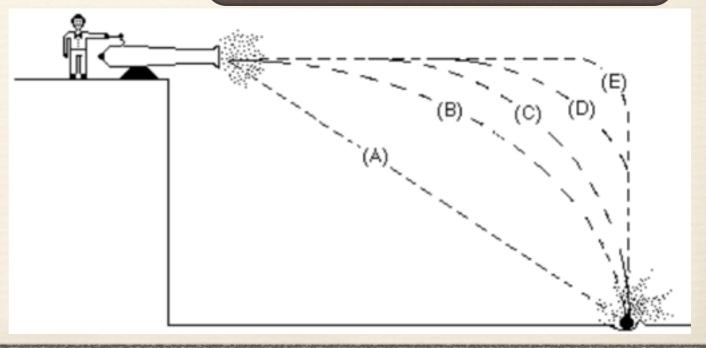
Other current research


Women's leadership in STEM departments and colleges (department chair/head, dean)

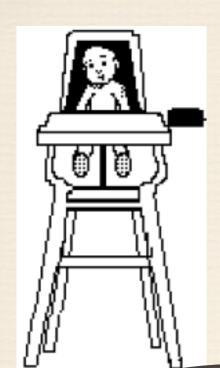
Research on gender & test questions

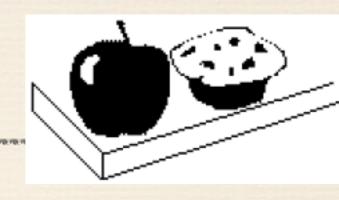

- * Force Concept Inventory
- * 30 question multiple choice
- Conceptual introductory physics
- Wrong answers based on research on common misconceptions
- Used across the country (HS, 2-yr, 4-yr colleges & universities)
- * Has gender gap in performance favoring males
- * Background differences do not account for gap

a large truck collides with...



a hockey puck sliding with constant speed...


a boy throws a steel ball..



Context and gender

- * Original FCI: stereotypically male contexts
- * Do contexts play a role in gender gap?
- * Revised FCI: stereotypically female contexts

a very full shopping cart collides with...

a girl throws a teddy bear...

a pat of butter slides with constant speed...

Original FCI vs. Revised FCI

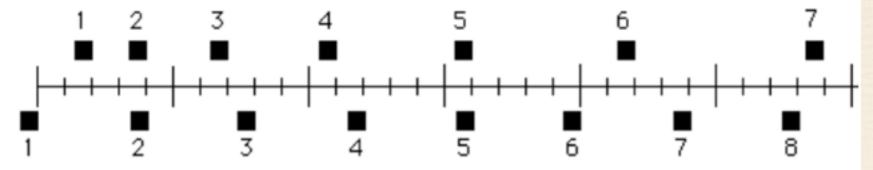
Avg. % correct

	Original FCI	Revised FCI
Pre-instruction*	30.5 (N=283)	35.3 (N=225)
Post-instruction	46.1 (N=340)	43.9 (N=278)

Original FCI vs. Revised FCI

Avg. % correct by gender

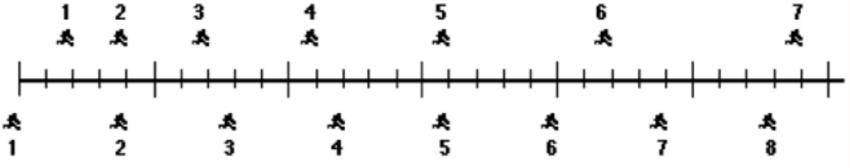
	Original FCI	Revised FCI
Women Pre-	23.5	29.4
instruction*	(N=99)	(N=93)
Men Pre-	34.3	39.4
instruction*	(N=184)	(N=132)
Women Post-	35.6	38.0
instruction	(N=93)	(N=121)
Men Post-	50.1	48.4
instruction	(N=247)	(N=157)


Results

- Overall no harm done with revision but no help either on post-test; pre-test shows improvement for both men and women
- Individual questions show large variety in patterns

Question 19

19. The positions of two blocks at successive 0.20-second time intervals are represented by the numbered squares in the figure below. The blocks are moving toward the right.


Original version

Do the blocks ever have the same speed?

- (A) No.
- (B) Yes, at instant 2.
- (C) Yes, at instant 5.
- (D) Yes, at instants 2 and 5.
- (E) Yes, at some time during the interval 3 to 4.
- 19. The positions of two joggers, Ann and Pam, are shown below. The joggers are shown at successive 0.20-second time intervals, and they are moving towards the right.

New version

Do the joggers ever have the same speed?

- (A) No.
- (B) Yes, at instant 2.
- (C) Yes, at instant 5.
- (D) Yes, at instants 2 and 5
- (E) Yes, at some time during the interval 3 to 4.

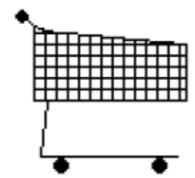
Positive Changes

Avg. % correct on Q19

	Original FCI	Revised FCI
Women Pre- instruction*	32	48
Men Pre- instruction*	42	58
Women Post- instruction*	34	52
Men Post- instruction	50	61

Question 4

Original version


A large truck collides head-on with a small compact car. During the collision:

- (A) the truck exerts a greater amount of force on the car than the car exerts on the truck.
- (B) the car exerts a greater amount of force on the truck than the truck exerts on the car.
- (C) neither exerts a force on the other, the car gets smashed simply because it gets in the way of the truck.
- (D) the truck exerts a force on the car but the car does not exert a force on the truck.
- (E) the truck exerts the same amount of force on the car as the car exerts on the truck.

New version

Imagine a head-on collision between a very full shopping cart and an empty cart. Both carts are moving very quickly. During the collision,

(A)the full cart exerts a greater amount of force on the empty cart than the empty cart exerts on the full cart.

- (B)the empty cart exerts a greater amount of force on the full cart than the full cart exerts on the empty cart.
- (C)neither exerts a force on the other, the empty cart gets smashed simply because it gets in the way of the full cart.
- (D) the full cart exerts a force on the empty cart but the empty cart doesn't exert a force on the full cart.
- (E) the full cart exerts the same amount of force on the empty cart as the empty cart exerts on the full cart.

Neutral Changes

Avg. % correct on Q4

	Original FCI	Revised FCI
Women Pre- instruction	16	12
Men Pre- instruction	15	18
Women Post- instruction	34	23
Men Post- instruction*	39	26

* Others continuing this research even though I am focusing on something different now

Research overall

* So much fun! Explore whatever questions I want!

Teaching overall

- * Exactly what I've wanted to do since I was 16!
- * Students are awesome!

Service overall

- * Part of the job that I love
- * Different aspects: department head, committee work on campus, committee work for national organizations, community service

I love my job!

- * Fulfilling
- Job that serves society--important to me
- Weird flexibility

Being a woman in physics...

- * Affected my research questions
- * Maybe affected my educational path
- Expanded awareness of issues with gender and physics
- * Awareness of other minorities in physics too

Top Five (Tongue-in-Cheek) Reasons It's Good To Be A Woman In Physics:

- 5. Bad hair days are expected.
- 4. No one expects you to wear heels to set up lab equipment.
- 3. You can wear the same clothes every day and no one comments (lab coats rock!).
- 2. You have to know how to solve a Lagrangian, but you don't have to know how to cook and clean the bathroom.

And the number one reason it's good to be a woman in physics:

1. There's never a line at the bathroom.

* Thank you!