Gender Issues in Physics

Laura McCullough
University of Wisconsin-Stout
Physics Department

Women and Science

Q Technological society
Q Scientifically literate public
Q Science for all, not just for white males

Is there a problem?

Q Look around!
Q Under-representation of women in physical sciences

Q Need to encourage women
Q Need to determine what's wrong
Qeed to determine barriers and incentives

Overview

Qhat are the numbers of women in physics?
Q What are some of the barriers to women in physics at different levels?

Q Gender and education

Is there a problem?

9
"Here's how my high school chemistry class was taught: Boys were seated by the male teacher on the side of the room with the teacher's desk. Girls were seated on the far side of the room. Girls were told to be quiet and not cause trouble and they would not fail the class. When 'dangerous' experiments were conducted, the boys went into the lab while the girls watched through the windows."

Failing at Fairness, 1994, pg. 121

Women's Education

Women receive
Q about half of all high school diplomas,
Q about half of all bachelor's degrees (56%),
Q 57% of master's degrees, and
42% of doctorates
What about physics?

High School Physics

High School Physics

C)
50% of high school physics students are women! (28% of students take HS physics)

But...
Q Women are still not found in the AP courses which are better preparation for college coursework

Undergraduate Physics

Undergraduate Physics

Q Women make up 31% of two-year college physics students

Q Women receive 19% of physics bachelors

Graduate Physics

Graduate Physics

Q Women receive 21% of master's degrees in physics

13\% of physics doctorates go to women

Academic physics

Q 17% of assistant professors of physics are women

Q 10% of associate professors of physics are women

Q 3% of full professors of physics are women

Q Is this a problem?

Yes, there is a problem

Q Severe under-representation of women in physics and most of the physical sciences

Q Need to be encouraging women
Qeed to stop discouraging women
Q What's causing women to leave?

The Problem: Primary and Middle School

9
By 5th grade, boys and girls have significantly different in-school and out-ofschool science experiences

Q By 6th grade, girls' attitudes towards science are more negative than boys'

Q By 6th grade, girls score lower on science achievement tests than boys do

The Problem: High School

Barriers:
Q Peer culture
Q Peer harassment

- Bad counseling and advice

Q Sexism from administrators and teachers
Q Classroom culture of sexism
Lack of female teachers/role models (25%)
Q Parental influence
"In 1962 I switched to a new high school. I wanted to sign up for physics, but the principal would not allow it. His comment was that a girl had no need for physics."

Failing at Fairness, 1994, pg. 120During the roll call on the first day of class, Mr. Y called out the name of a girl who was head varsity cheerleader, then stopped and said "What are you doing in chemistry? Shouldn't you be out jumping up and down or something?"

Leach, Sch. Sci. \& Math, 1995

Q Jennifer noticed that Mr. X focused his attention on the seven male students who sat in front of her and to her left. She raised her hand to answer questions; he ignored her. She raised her hand to ask questions; he ignored her. At one point, [the other female students] began tallying her attempts to respond in class. During a five day class period, she raised her hand to answer or ask a question 32 times. She was never once acknowledged.

Leach, Sch. Sci. \& Math, 1995

Q On the first day of class, students were told to sit where they wanted the next day. When Kim
entered class the next day, and took a seat toward the middle of the room, Mr. Z approached her and asked her to please move to the front, because he "liked to look at her."

Q When Kim was working on an assignment in class one day, Mr. Z leaned over her desk and said, "I guess you won't kiss me because you think I look like the elephant man." Dumbfounded, she remained silent but replied by pointing to his wedding ring.

Leach, Sch, Sci. \& Math, 1995

High school science lab

Q Lab and hands-on experiences are some of the most effective teaching techniques in science; but only if students participate
9
In mixed-sex classes and groups, male students tend to dominate equipment and materials; female students are often relegated to role of note-taker and recorder

The Problem: Undergraduate science

Barriers:

Q Peer harassment
Outright sexism in the classroom
Qoor advising
Qack of mentors and role models
Q Poor pedagogy
"Freshman chem is taught at Harvard by a famous chemist, a man in his sixties who would put an equation on the board and in a room of five hundred people turn and say 'Get that, girls?'

Q The first time I heard him say that I laughed. The second time I became angry. The third time I was scared. I started thinking 'Do you get it? Can you get it?"'

Gornick, Women in Science, p. 74

The Problem: Industry and Academe

Barriers:
Qarallel tracking: "lab technician"
Q Harassment
Q Sexism
Q Lack of role models
Cultural expectations
Qamily/work conflicts
Q Two-body problem

Q "They said to me, 'If you become pregnant you'll get fired.' Can you imagine what it means to hear something like that? I mean, that says something deep to you.

So I got pregnant, and they never knew it. I just wore a lab coat one size larger. Who every really looked at me? I came back two days after the baby was born, and I never told a soul there that I had had a child."

Gornick, Women in Science, pg. IO2

There is a Problem

Q Discouraging women at every stage
Q Many societal and cultural barriers
Q Are there particular barriers in science education?

The Problem: Science Education

Q Physics exhibits one of the most severe underrepresentations in the sciences

Q Personal interest in women \& physics
Q Personal interest in research in physics education and general education research

Biological/Psychological Differences

Meta-analyses suggest no large or significant differences in cognitive ability between males and female; though there is an increasing amount of research on cognitive processes.

Q Memory tasks

Learning Styles

Qearning styles probably differ by gender, but research results vary widely
-men are more abstract learners, women have more anxiety about study success; men are more intuitive, women are more analytical; women more organized, men more undirected, etc.

Q Different tests produce small but consistent gender differences

Attitudes towards Science

1983 meta-analysis suggests no gender difference, a 1995 meta-analysis found more positive attitudes among boys; research still inconclusive

Q Possible age-gender interaction/ rates of development

Q 1995 analysis found positive correlation between attitude and achievement; higher correlation for girls

"Self" Variables

Q Women tend to attribute success to luck or effort, men attribute success to ability

Qeelings about science due to sex-role stereotyping

Q Decrease in confidence and academic risktaking as girls get older

Gender and ProblemSolving

Q Higher problem-solving achievement among males than among females

Q How you ask the question may affect student responses

Gender and Learning

Q All of these are factors which could affect learning. But...research in these areas is often inconclusive

Q Overall picture suggests that men and women may learn differently

Q The context of being male or female interacts with the classroom and society to affect learning

Summary

Q There is a problem with the lack of women in science, particularly physics

Q Many different factors contribute to the under-representation of women

Social, educational, psychological and biological differences

Q We need to be accounting for these differences and working towards getting more women into science

What can we do?

Q Many intervention programs at the K-I2 level
Q Site visits for physics graduate departments (APS Committee on the Status of Women in Physics)
Q
Recent project doing site visits at undergraduate physics departments
Q Awareness/education of men and women through professional organizations, research articles, websites, and informal communications

Good resources

Q AIP Education/Statistics Page
Q NSF Report on Women, Minorities and Persons with Disabilities

Q UW-System Women and Science Program
Q APS CSWP website and newsletter
Q Association of Women in Science
Q Achieving Gender Equity handbook from Brown University Faculty and Students

References

AAUW. (1992). How Schools Shortchange Girls. NY: Marlowe \& Co.
AAUW. (1999). Gender Gaps. NY: Marlowe \& Co.
Adigwe, J. C. (1992). Gender differences in chemical problem solving amongst Nigerian students. Research in Science \& Technological Education, 10(2), 187.
Baker, D. (1985). Predictive value of attitude, cognitive ability, and personality to science achievement in the middle school. J. of Res. In Sci. Teach. 22(2), 103-113.
Belenky, M. F., Clinchy, B. M., Goldberger, N. R., Tarule, J.M. (1986). Women's Ways of Knowing. NY: Basic Books.
Brophy, J. (1985). Interactions of male and female students with male and female teachers. In Wilkinson \& Frazer, (Eds.), Gender Influences in Classroom Interaction. NY: Academic Press.
Casey, B. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. J. for Res. in Math. Ed. 32(I), 28.
Fausto-Sterling, A. (1985). Myths of Gender. NY: Basic Books.
Fennema, E. (1990). Justice, equity, and mathematics education. In E. Fennema \& G. C. Ledet (Eds.) Mathematics and gender. NY: Teachers College Press.
Freidman, L. (1995). The space factor in mathematics: Gender differences. Rev. of Ed. Res., 65 (I), 22-50.
Guzzetti, B. (1998). Texts and Talk: The Role of Gender in Learning Physics. Research Report: ERIC Document ED 422164.

References

Herrmann, D. \& Crawford, M. (1992). Gender-linked differences in everyday memory performance. British J. of Psych., $83(2), 221$.
Johnson, E. (1984). Sex differences in problem solving, J. of Educational Psychology, 76(6), 1354-1371.
Jones, M. G. \& Wheatley, J. (1990). Gender differences in teacher-student interactions in science classrooms. J. of Res. in Science Teach., 27(9), 861-874.
Kahle, J. B. (1990). Real students take chemistry and physics: Gender issues. In Tobin, Kahle, \& Frazer, (Eds.) Windows into Science Classrooms: Problems Associated with Higher-Level Cognitive Learning. NY: Falmer.
Kahle, J. B. \& Rennie, L. J. (1993). Ameliorating gender differences in attitudes about science: A cross-national study. J. of Sci. Ed. and Technology, 23, 321-333.
Kimura, D. (2000). Sex and Cognition. Cambridge, MA: MIT Press.
Laws, P., Rosborough, P., Poodry, F. (1999). Women's responses to an activity based introductory physics program. Am. J. of Physics Physics Education Research Supplement, $67(7), S_{32}-S_{37}$.
Moreno, R. \& Mayer, R. (1999). Gender differences in responding to open-ended problem-solving questions. Learning \& Individual Differences, iI (4), 355 .
Nuby, J. \& Oxford, R. (1996). Learning Style Preferences of Native American and AfricanAmerican Secondary Students as Measured by the MBTI. Paper presented at the Annual Meeting of the Mid-South Educational Research Association.Tuscaloosa, AL.

References

Orenstein, P. (1995). Schoolgirls: Young Women, Self-Esteem, and the Confidence Gap. NY:
Doubleday.
Philbin, M., Meier, E., Huffman, S., \& Boverie, P. (1995). A survey of gender and learning styles.
Sex Roles, 32 (7/8), 485-494.
Sadker, M. \& Sadker, D. (1994). Failing at Fairness. NY: Simon \& Schuster.
Sadler-Smith, E. (1999). Intuition-analysis style and approaches to studying. Educational Studies, 25(2), 159.
Severiens, S. E. \& ten Dam, G. T. M., (1994). Gender differences in learning styles: a narrative review and a quantitative meta-analysis. Higher Education, 27, 487-501.
Steinkamp \& Maehr, (1983). Affect, ability, and science achievement: A quantitative synthesis of correlational research. Rev. of Ed. Res., 53(3), 369-396.
Suits, J. \& Lagowski, J. (1994). Chemistry problem-solving abilities: Gender, reasoning level and computer-simulated experiments. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Anaheim, CA.
Sweeny, E. (1953) Sex Differences in Problem Solving (Tech Rep. No. I, contract N6oNR-25 125) (Standford, CA: Standford University).
Weinburgh, M. (1995). Gender differences in student attitudes toward science: A meta-analysis of the literature from 1970-1991. J. of Res. in Science Teach., 32(4), 387-398.

